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POTENTIAL-FLOWANALYSIS OF UNSTEJU)Y OUTFLOW FROM

A TANK AND ITS EFFECT ON Ti_E DYNAMICS

OF A FLDID SYSTEM

By Willis_nH. Roudebush and I. Irving Pinkel

SUMMARY

When an analytical investigation of the unsteady flow from a pro-

pellant tank was made; a simple equation was obtained that relates the

tank pressure drop to the development of the volume flow rate out of the

tank. This equation allows the incorporation of the tank characteris-

tics into a one-dimensional analysis of the dynamics of a fluid system

and makes possible the determination of situations in which the dynamic

characteristics of the tank are important.

Including the dynamic characteristics of the tank in a system

analysis becomes more important as: (i) the ratio of liquid level to

tank radius increases; (2) the ratio of outlet radius to tank radius

increases; and (Z) the ratio of outlet-pipe length to tank radius de-

creases. In traditional rocket systems the increase in accuracy ob-

tained when the dynamic properties of the tank are included is usually

only a few percent. In some systems; however; the dynamic effects of

the tank can be important.

INTRODUCTION

In many fluid systems the tank pressure drop is a small fraction of

the pressure drop throughout the system. Errors in the estimation of

the tank pressure drop are often of little consequence. If; however;

the temperature of the liquid in the tank is near boiling and if the

liquid is flowing to a pump that is operating near its cavitation limit;

then small errors in the estimation of tank pressure drop can make large

differences in the estimation of pump performance. Furthermore; the

starting-flow tank pressure drop for a tank connected by a short pipe

to a receiver is a large part of the total system pressure drop. Under

such conditions an improvement in the accuracy of tank pressure drop

computations may be desired.



This report describes a potential-flow solution to determine the
pressure drop during the starting flow out of a tank. This solution is
limited to the case in°which the free liquid surface in the tank is high
enough for the surface to be considered flat and moving downwardwith
the samespeedat all points. A criterion is developed for determining
when this condition on the free liquid surface exists. An illustrative
example showshow the results of this report are used in the analysis
of the starting flow in a fluid system involving tanks_ lines, valves_
and orifices.

ANALYSIS

The analysis of the tank flow is restricted to a nonviscous fluid 3
so that real fluid effects (e.g., outlet separation) are not considered.
It is assumedthroughout the analysis that the fluid has no component
of tangential velocity. In addition to the restrictions on the fluid,
the analysis is restricted to tanks having flat bottoms.

Bernoulli Equation for Unsteady Flow

An unsteady3 irrotational_ incompressible flow satisfies the
Bernoulli equation (ref. i)

i q2 P(x_Y3z_t)
_-_ _(x_y,z,t) + _ (x,y,z,t) + '-" D + yg = f(t)

(l)

where q is the magnitude of the local velocity vector _ _ is the

velocity potentia!_ that is_ gradient _(x_y3z3t) = q(x,y,z,t); and

f(t) is a function of time. (All symbols are defined in the appendix

and the coordinate axes are shown in fig. i.) Since the pressure level

in the entire flow field can be varied with time in any way without

otherwise affecting the flow, f(t) is arbitrary.

A cylindrical tank oriented as shown in figure i is analyzed. Two

locations on the tank centerline or y-axis_ that may vary with time are

denoted by Yl(t) and Y2(t).

Equation (i) can be evaluated at the two locations at the same

instant and the function f(t) eliminated; the result is

_[Yl (t),t] - q_[Y2(t),t] +

v2[yl(t),t] - v2[y2<t),t]

+
p[yl(t),t] - p[yB(t),t]

+ gyl(t) - gy2(t) : 0 (2)

where v is the vertical component of velocity.

!

OD
DO



For this analysis Y2(t) is taken to be the origin of coordinates

(fig. i)_ which corresponds to the center of the outlet pipe at the

bottom of the tank_ therefore_ Y2(t) is invariant with time. Equation

(2), then, becomes

_ q_(O,t)l +I(P[Yl (t)'t]

v2[yl(t),t] - v2(O,t)

p[yl(t),t] - p(O,t)

+ + gyl(t) : 0 (3)
P

Method of Determining Tank Potential Function

In order to proceed with the solution of equation (5), some knowl-

edge of the potential function along the y-axis is required. In what

follows _(y_t) will be determined through an approximation of the de-

sired tank flow using an infinite number of sinks.

An infinite set of three-dimensional point sinks distributed in

the x,z-plane (i.e. 3 the plane of the tank bottom) in the pattern shown

in figure 2(a) repeated indefinitely is considered. The plane passing

through points A and C perpendicular to the x_z-plane is a plane of

symmetry in the resulting flow. Since there can be no flow through this

plane without destroying the symmetry_ the plane is a stream surface.

This is also true for similar planes through points h and D, points C

and E_ and so forth. It follows that a hexagonal tank erected perpen-

dicular to the x_z-plane on the base 3 which is outlined by a solid line

in figure 2(a_, is actually a stream surface of the flow. Since the

x_z-p!ane is also a stream surface, the flow can be interpreted as the

flow out of a point in the center of the bottom of a hexagonal tank of

infinite length and finite diameter (2r_). The flow field induced by

the sinks is actually a honeycomb of such hexagonal tanks_ but attention

is confined to the one that contains the origin of the coordinates (see

fig. i). (It is interesting to note that there are many other planes

of symmetry and that_ if the proper ones are selected for tank walls 3

various other tank configurations can be obtained from this same flow

field. In particular 3 a hexagonal tank can be formed with outlets at

three corners instead of one outlet at the center. The results obtained

in this paper can 3 therefore 3 be applied to such a case with the obvious

difference that three times the volume flow is leaving this new tank.)

For the purpose of this investigation the point-sink approximation

(fig. 2(a)) to the flow from the tank (fig. i) is deficient in two ways.

First_ the tank is hexagonal instead of cylindrical. Since the tank

walls are a substantial distance from the outlet in most practical tanks,

however_ this disadvantage is not considered too important. The second
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and more serious drawback is the representation of the tank outlet by a
point sink_ which results in infinitely large velocities at the outlet
and gives no indication of the possible effect of outlet radius. To
improve this situation the point sink inside the tank can be replaced
by a uniformly distributed sink that covers the actual area of the tank
outlet _r_ut (fig. 2(b)). Within the outlet area in the x,z-plane, the
uniformly distributed sink will have a constant finite vertical velocity
equal to the volume flow rate of the replaced point sink divided by the
area of the tank outlet.

It will be shownthat the differences between a point sink and a
distributed sink diminish very rapidly beyond the immediate neighbor-
hood of the sink. With this justification a great simplification is
achieved by the continued use of point sinks outside the tank. This
results in a lack of complete symmetryabout the planes forming the tank
walls (see fig. 2(b)), so that the walls are distorted to somedegree,
especially near the base. This distortion is expected to be negligible
for tank- to outlet-radius ratios of practical interest.

Onefurther point needs discussion. The sink-induced flow_ which
is actually the flow from an infinitely long tank of liquid 3 is used to
approximate the flow from a tank having a finite liquid level. The
essential features of the free-surface flow (i.e., the flow with a
finite liquid level) are the following:

(i) The pressure is constant on the free surface.

(2) The free surface is always composedof the sameparticles.

In general; the particles that form a constant-pressure surface at one
instant of time in the sink-induced flow will not form a constant-
pressure surface at other times. The sink-induced flow therefore de-
viates from the flow that would have resulted if the free-surface con-
ditions had been included in the analysis} however_ the velocity of the
sink-induced flow is uniform across the tank at a location sufficiently
above the bottom of the tank. In this case; a surface that is normal
to the tank axis will be a constant-pressure surface and will continue
to be one as long as the velocity remains uniform. The investigation
is therefore confined to sufficiently great liquid levels (greater than
i tank diam), so that the sink-induced flow is a suitable substitute
for the actual free-surface flow.

!

O_

DO

Determination of Potential Function

The potential function for a single point sink located at an arbi-

trary point (Xo,Yo, Zo) and having a volume flow rate of Q(t) cubic

feet per second coming from the half-space above the x,z-plane is:



e4
_o

i

_(x,y,z,t)= Q(t) + constant (_)

z_(= - =o)2 + (y - yo)2 + (z - Zo)2

(When the first 2 in the denominator is replaced by a 4, the customary

equation for a point sink of strength Q(t) in the whole space results.)

If only the values of _ on the y-axis and only sinks located in the

x,z-plane are considered, equation (_) becomes

qD(y,t) - iQ(t) + constant (5)

+ +Zo

If _Z denotes the contribution of all point sinks outside the tank,

it follows from figure 2 that

q_z(y,t ) = Q(t____) 2 2

2_r_ _(_i2 + _(_T) -

+ Ak 2 y 2 + 12k2

r =

co oo

y 2

k=l j=l _ \ T/

+ 3(2k - 1) 2 + (2j - 1) 2

+ 12k 2 + Aj

k=l j=l W\ TJ

+ constant (6) .

where the terms in their respective order represent the sinks on the

z-axis, the sinks on the x-axis, the sinks on the odd-numbered rows,

and the sinks on the even-numbered rows. In its present form the

series (eq. (6)) diverges for all values of y/r_. If, however, an

appropriate constant is associated with each individual sink, the

result is the following convergent series:
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/t[ 2
(_z(Y't) = 2xr_ ) / I g .2

+ _k 2 +

k=l J=! L 1/ \ /

+S(_k- Z)2 + (2j- l)_

+ 12k 2 d

2 + 12k2 + 4j2

k=l J=l L T \ T/

Vl2k + _j2

(7)

The distributed sink about the origin is obtained in the following

way. If rou t denotes the radius of the outlet pipe 3 the volume flow

rate per unit area in the outlet is Q/_r2ut. If s = Vx 2 + z 2 and

e = tan -I x are polar coordinates in the plane of the outlet, the
Z

volume flow rate through an increment of area s Ae AS is

(Q/n_o2ut)S Aa AS. According to equation (5), the contribution to the po-

tential function on the y-axis, which arises from the increment s Z_e As

of area in the outlet region, is approximately

Q
s Z_9 As

_ro2ut

2x _s 2 + y2

where the sink is assumed to be located at a single point within the

increment of area. The potential function, arising from sinks uniformly

distributed over the entire outlet area, is obtained when the various

contributions (similar to the one Just mentioned) are summed and Zks

and 2_9 approach zero. This potential is denoted by q0c; the result

is the integral

froutl___ _ro2ut s ds de

q)c(Y't) - 2_JO JO V s2 + y2

+ constant (8)

_J
!

o%



When equation (8) is integrated and when the arbitrary constant is dis-

regarded_

_c(Y_t ) Q(t) (_ro2ut + y2 - y)= _ _r'T _21J_rout_2 + t._) 2 - r_]
= gro2ut _r T \rout] L, \--_T / r

For y > rou t equation (9) can be expanded in terms of

Q(t) _ i ro2ut
mc(y, t)

2_y \_ 4 y2

(9)

ro ut/Y as

+ 81r4ut_y4 . .) (I0)

The first term on the right side is the equivalent of a point sink at

the origin (see eq. (5)). The difference in the effects of a point

sink and a distributed sink on the potential function is less than

r_ut/Ay2,- or approximately i percent at 5 tank-outlet radii above the

center of the distributed sink. This result tends to Justify the use

of point sinks instead of distributed sinks outside the tank.

From equations (7) and (9) it is seen that

' _cr_@rT _ZrT

Q Q

_r_/Q, where

depends only on y/r_ and rout/r_. In fact, rout/r _ only affects
I

the value of q0crT/Q.

The velocities induced along the y-axis by the external sinks and

by the central sink are obtained by differentiating equations (7) and

(9)_ respectively:

rT2vz(y ,t )

q(t)

2 2+ + 5(2k - i) 2 + (2J - 1) 2

k=l J=l _rT]



Q(t) _ _ _r-_utl _ \r_ 2 r_

Co_utations. - Since the series (eq. (7)) converges slowly, it is

not very useful for co_utations. In order to obtain values of _3

the velocity _ was first computed by means of e_ation (ii). With

v Z as a function of y, it was possible to integrate and get _. EVa-

tion (7) was used to spot check the values of _Z obtained by inte_a-
tion.

!

Figure 3 shows the calculated variations of r_z/Q and rT_c/Q

/! /with y rT for two extreme values of rou t r_. For all values of
! !

y/r T greater than 2.0 (i tank diam), the effect of rout/r T disappears.

The effect of _c on the variation of the total potential function

_c + _Z is large near the outlet but rapidly diminishes when y/r_ in-

creases. The effect of _Z on the variation of _c + _Z is small near

the outlet_ but _Z quickly becomes the principal element. The sum of

these two potentials is nearly linear from a value of y/r_ of approxi-

mately 1.5.

Figure 4 shows the variation of the velocity ratio v/V along the

tank axis, where V = -Q/2_/_ r_ 2 is the magnitude of the velocity far

up in the tank. (The minus sign occurs because the flow direction is

Opposite to the positive y-axis.) Two extreme values of rout/r _ were

used in equations (ii) and (12) to obtain the plot. The entire velocity

is shown in figure 4(a)_ and the contributions of the external sinks

and of the central sink are shown separately in figure 4(b). The fig-

ure shows that the velocity at the centerline of the tank quickly ap-

proaches the uniform-flow velocity with increasing height above the

outlet. In fact, v,(the total velocity in fig. 4(a)) is within i per-

cent of V by y/r T = 1.5. This indicates that essentially uniform

flow is occurring less than i tank diameter up from the bottom_ if it is

assumed that maximum deviation occurs at the center of the tank. This

result is not affected by the value of rout/r _. The use of the sink

flow for tank liquid levels of i diameter or more is Justified.

Potential-function difference _(y_t) - _(0_t). - Consider only

those values of y so far above the tank outlet that the flow is uni-

form and has the velocity v = V. Since v = j q0 is independent of

x and z and varies linearly with y for all such large values of y.

!

O_

DO



C_

!

Therefore,

_(y,t) m _c(Y,t) + Sz(y,t) = Vy + A o (is)

where A o is independent of y. Equation (13) is valid only for those

values of y so large that the flow at that level can be considered

uniform. The value of Ao can be determined from previously computed

values of q0c + q0r, which are presented in figure 5, as follows. Since

Q -2-_ '2= rT V, equation (13) can be rewritten as

+ ) -1 .m +

When the value of r_Ao/Q is determined from the values given in fig-

ure 3 in such a way that equation (14) fits the straight portion of the

curve, equation (14) becomes

q°(Y't) = _c(Y't) + _E(Y't) = Q(t) (0"344r_ 2-_1 r_) (15)

Equation (15) is a valid expression for _(y,t) as long as y is suf-

ficiently large.

Since _Z(0,t) = 0, the value of q0(y,t) at y = 0 derived from

equation (9) is

9(O't) = q_C(O't) : _ { r_ _ (16)

rT_ \rout/

When equations (15) and (16) are combined, the result is

(0 )___ i rT

q_(y,t)- _(0,t)_T "544- 2_5 r_ _ r_ut
(17)

which is valid for all y sufficiently large.

Simplified Bernoulli Equation for Unsteady Tank Flow

As long as Yl(t) is sufficiently large, equation (17) can be used

in equation (5) to give
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34_
i Yl

2_ r_

i rT dQ(t)
r dt '4

i 12 rT

rht )Q2( t

P(yl)- p(O)
+

+ p gYl = 0
(18)

where

Q- -2-_ rT2 v(Yl) = -_r2ou_'V(O)

and

v2(yl) - v2(O) iF{ Q(t) 2

:-ZLk=. \-

(19)

Since rT is a characteristic dimension of a hexagonal tank, it is
!

convenient to replace r T with an equivalent radius r T (i.e., the

radius of a cylindrical tank of equal cross-sectional area). Since

2_f3 r_2 = _r_, equation (t8)becomes

1 _0 i rT i Yl) dQ(t) i _r_ l_Q2(t )
r-T .561 _ rou t _ _ dt 2_2r_ <ro4ut 7

+ P(Yl) p(o) + gyl : o (20)
P

t_
I

O_

Equation (20) is the principal equation of this analysis and in-

cludes_ with some simplifications, the effect of the tank dynamics in

the expression for the tank pressure drop. The form of the equation is

typical of a one-dimensional system analysis and is easily incorporated

into such an analysis, it ..... be remembered that equation (20)

applies only for values of Yl of approximately i tank diameter or more.

To use this equation in tank-flow analyses, Yl(t) is taken equal

to Y(t), which is the height of the free surface (i.e., the depth of

the liquid in the tank). In this case equation (20) has two unknowns,

Y(t) and Q(t)j which are related by means of the differential equation.

_Y(t): v(t): (_<(l! (21)
dt _r 2
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In general, equations (20) and (21) can be solved simultaneously when
p(Y) - p(0) is given or determined by one or more additional differential
equations. For starting transients of very short duration, however_ the
change in Y is negligible and equation (20) can be used alone.

tO

!

Dynamics of Tank and Line

If the tank flow is considered steady as in a simplified system

analysis_ Bernoulli's equation can be used to obtain

P 2_2r_ kro_ut U - gY
(22)

The increased accuracy of equation (20) over equation (22) is entirely

in the coefficient of dQ(t)/dt.

Now if a pipe of radius rou t and length L is attached to the

outlet, the pressure drop along the pipe is

Zkpp L _+ Lf Q2(t ) (23)

p _r_u t dt 4_2r_ut

The total drop in pressure across the tank and across the length of pipe
L is

APTOT = i_ r( _ _dQ(t) + Lf Q2(t ) +

p rT \_r_ut / dt 4_2r_ut \ o4ut Q2(t)- gY

(24)

If equation (20) is used instead of the steady-flow Bernoulli equation

(eq. (22)), the expression for pressure drop becomes

APTOT i I rTL i rT i Y l) dQ(t) Lf
- -- + +--- - 0.56 + Q2(t)

p rT _ro2ut _ rou t _ rT dt 4_2roSut

+ {. l)Q2(t)_
2_2r_ kro4ut

(25)
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Equations (24) and (25) differ only in the coefficient of dQ(t)/dt.

If KT0 T denotes this coefficient in equation (25),

i L rTL
=Fg 

T _rou t

i rT i Y
+ +-----

rou t _ rT J xrT \rout rout
4)+-- - 1.13

rout rT

If the part of the coefficient that is attributable to the tank is de-

noted by KT,

rT y
-- + -- - i. 134

KT rout rT
- (26)

½or / r T \ L rT y
l 2 +_ +-- . 1.134

rout

This ratio is a measure of the effect of the tank on the system dynamics

and depends on the three ratios rout/rT, Y/rT, and L/r T.

Figure 5 is a plot of this ratio of coefficients. For any values

of liquid level ratio Y/r T and outlet-radius ratio rout/r T, the ef-

fect of including the tank dynamics falls off quickly as the outlet-

pipe-length ratio L/r T increases. The effect of the tank is greatest

for the largest values of Y/r T and rout/r T. For most cases of in-

terest it appears from figure 5 that the effect of the tank is small.

The tank begins to make a significant difference in the coefficient of

dQ/dt for either very short outlet pipes or large liquid levels.

D_
!

o_
Do

SAMPLE CALCULATION

In order to examine the effect of the unsteady flow term in a

specific case, the following example is considered. Figure 6 is a sche-

matic diagram of a part of a simple rocket system. The tank containing

one of the propellants, the line that leads from the tank to the com-

bustion chamber, the valve_ and the injector are the only parts involved.

The pressure change from the ullage space in the tank (station I)

to the tank outlet (station 2) is given by equation (20) with Yi = Y:

Pl-P2 1 l1 rT i Y 1) dQ(t) 1 _r_ )--= + 0.38 + _A--_ "._- 1 Q2(t) - Y
pg rTg rou t _ r T dt 2_ rTgkrout

(27)
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!

The change in pressure from the tank outlet to the valve inlet

(station 5) is given by (ref. 2)

P2 - P3 = L dQ(t) + Lf Q2(t )

pg _r_utg dt 4_2r_utg

(28)

The change in head across the valve is given by reference 2 as

P5 - PA _ _7Q2(t) (29)
Pg

In this example, valve resistance varies from that for a near off posi-

tion, which just supports combustion 7 to that for a full on position,

which admits the design volume flow rate. The resistance of the valve

is a function of the valve design and varies with time in a prescribed

way.

The change in pressure across the injector is given by

P4 - P5 = _injQ2(t ) (30)
Pg

where _inj is injector resistance, a constant depending only on the

particular design.

The temperature in the rocket chamber is assumed constant, and the

throat is assumed to be choked. In this ease the chamber head is

directly proportional to the volume flow rate (ref. 2)

P5 = RchQ(t ) (51)
Pg

If equations (29) to (51) are added together, the result is

Pl i I___ + i rTPg rTg rT _ rou t

+ _ __-TT-
[2_ rTgkrou t i> +

+
1 r@

ro2ut

Lf + JQ2(t)+ RchQ(t) - y (32)

"I

4_2roSutg _V + _in ]
As liquid flows from the tank, the surface level Y changes;

therefore, equation (52) must be used in conjunction with equation (21)

to obtain a solution. A solution is first obtained, however, when this

change in Y is ignored.
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If Y is a constant, equation (32) can be solved numerically when
the tank pressure Pl and the valve resistance _V are prescribed as
functions of time. If Pl is taken to be constant and the change in
_V is taken to be a step change, equation (32) can be solved in a
closed form.

The following values are assumedand are consistent with a 15,000-
pound-thrust rocket:

Tank pressure, PI' ib/sq in .................... 500
Design chamberpressure, P5(t) as t _ _, ib/sq in ........ 338
Design flow rate, Q(t) as t _ _, cu ft/sec .......... 0.534
Starting flow rate, cu ft/sec ................. 0.053

Injector resistance, _inj' sec2/ft5 ............... 578
Tank dius,ra rT, ft ....................... i. 5
Liquid level, Y, ft ....................... 9.0
Outlet radius, rout, ft ..................... 0.15
Constant of proportionality for rocket chamber, Rch, sec/sq ft . . 1288
Pipe length, L, ft ...................... 1.5
Gravitational constant, g, ft/sec 2 ................ 32.2

Friction factor, f, dimensionless <] s c > .......... 0.025Valve resistance in open position, e 2 ft 5 ........ 606
Propellant density, D, slugs/cu ft ................ 2.2

Whenthese values are substituted in equation (32), the result is

= 1354 - i701q - 1568q2
at (33)

With Q = 0.053 cubic foot per second at t = 0, equation (33) has the

solution

Q = 1.076 tanh (1687t + 0.625) - 0.542 (34)

If the effect of the tank dynamics is neglected, the solution is

Q = 1.076 tanh (1938t + 0.625) - 0.542 (35)

Both of these results (eqs. (34) and (35)) are plotted in figure 7.

A maximum difference of about 5 percent occurs in the volume flow rates

for the two equations. Larger values of outlet radius will increase

this difference_ and larger values of pipe length will diminish it.

In this problem the time interval of interest is about 0.002 second

(see fig. 7). During this time, the change in Y is less than 0.00015

foot. Since such a change would have a negligible influence on the

!

O]
_O
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simultaneous numerical solution of equations (32) and (21), the treat-

ment of Y as a constant is Justified. In many practical cases_ Y is

much smaller than Pl/Pg in equation (52), so that the variation of Y

can hardly be a factor of importance. In other cases, however, pl/pg

is small_ and the variation of Y with time may not be negligible.

o_
<o

!

CONCLUSIONS

The following conclusions were drawn from an analytical investi-

gation of the unsteady flow from a propellant tank:

i. A method is presented for finding the unsteady potential flow

from a tank. The result is used to develop an equation relating the

pressure drop (from the free surface of the liquid to the tank outlet)

to the rate of change of volume flow. This equation allows the in-

clusion of tank dynamic effects in a system analysis, or the determina-

tion of the error involved in the treatment of the tank flow as steady.

2. The importance of including the tank dynsmmlcs in a system

analysis increases as:

(a) The ratio of liquid level to tank radius increases

(b) The ratio of outlet radius to tank radius increases

(c) The ratio of outlet-pipe length to tank radius decreases

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, April 26, 1962
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APPENDIX - SYMBOLS

constant telnnin linear equation for _(y,t) at large

sq ft/sec

dimensionless friction factor

arbitrary function of time

gravitational constant_ ft/sec 2

summation index

coefficient of dQ/dt

tank and line_ ft -3

coefficient of dQ/dt

summation index

Y_

in expression for pressure drop across a

in expression for tank pressure drop_ ft -5

length of outlet line, ft

pressure_ Ib/sq ft

pressure at free surface of liquid in tank 3 ib/sq ft

pressure at center of tank bottom_ ib/sq ft

pressure upstream of valvej ib/sq ft

pressure downstream of valve, lb/sq ft

pressure in rocket chamber_ ib/sq ft

pressure drop along tank-outlet linej ib/sq ft

pressure drop from tank free surface to tank outiet 3 ib/sq ft

pressure drop across tank and outlet iine 3 ib/sq ft

volume flow rate_ cu ft/sec

magnitude of velocity vector_ ft/sec

local velocity veetor_ ft/sec

constant of proportionality for rocket chamber_ sec/sq ft
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r T

g

t

V

v

v C

v Z

X

X o

Y

Y

Yo

Yl

Y2

Z

Z o

0

P

cp

resistance of injector, sec2/ft5"

resistance of valve, sec2/sq ft

radius of tank-outlet line, ft

radius of tank, ft

one-half the width of hexagonal tank, ft

polar coordinate, radians

time, sec

velocity far up in tank, ft/sec

vertical component of velocity, ft/sec

vertical component of velocity induced by central distributed

sink, ft/sec

vertical component of velocity induced by infinite set of point

sinks, ft/sec

coordinate axis (fig. i), ft

x-coordinate of typical point sink, ft

y-coordinate of free surface, ft

coordinate axis (fig. i), ft

y-coordinate of typical point sink, ft

arbitrary location on y-axls, ft

arbitrary location on y-axls, ft

coordinate axis (fig. i), ft

z-coordinate of typical point sink, ft

polar coordinate s radians

density s slugs/cu ft

velocity potential, sq ft/sec
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_c

_Z

velocity potential of central distributed sink# sq ft/sec

velocity potential of infinite set of point sinks_ sq ft/sec
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Station

1 - Liquid surface

....... 2 - Center of tank bottom

!

Z - Valve i£1et

4 - Valve exit

5 - Rocket chamber

Figure 6. - Schematic diagram of part of sim-

ple rocket system.
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